C open smpp-3.4 Library

Raul Tremsal <rtremsal@movilgate.com>
Copyright © 2006 Movilgate SRL

This work is directed to C programmers with basic knowledge in SMPP protocol, at least
in the specification and handling of sessions. Extending a little the development of the
library, the scope of the same might involve a development methodology of protocols on
TCP/1IP.

Revision History

Revision 1.0 2006-06-03 Revised by: Raul Tremsal
Initial version.
Revision 1.1 2006-06-12 Revised by: Marcela Carbajo

Some corrections in english version.
Revision 1.2 2006-06-28 Revised by: Raul Tremsal
Some corrections in english version.
Revision 1.3 2006-10-28 Revised by: Raul Tremsal
Version 1.8, pending solved.

Table of Contents

000 T LT 1 N 3
Packaging function of data structures.......c.ccccoeieiuiiiiieiiiiiiiiiiiiiiiiiiiieieieieciceneneeane. 5
Unpackaging function of data structures.........cccceveviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieiccicenee, 7
Data structures dump functioncccceeiiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiirtetierereraseseeierecnes 9
Buffer dump functioncccoeieieiiiiiiiiiiiiiiiiiiiiiiiiiiiiirrr s aeees 10
Optional PAraAmMEtersScviuiiiiiiiiiiiiiiiiiiiiiiietieterieterietereatersocessasessasessssessasessasessasasss 11

Handling of destination address lists in SUBMIT_MULTI and SUBMIT_MULTI_RESP

Examples included in library release........cccccieiveiirrniiireiiennicesersasercacessscessasessacessasess 12
Conclusions and future WOrKS.ccoeiiiiiiieiiiieiiieieiiecersasersecessasersecessasessassssasessasasss 14

Introduction

The library main focus is to work in packaging and unpackaging of data structures. Inde-
pendently that this implementation is about SMPP-3.4, the aim is to generate a simple way
to implement any proprietary protocol on TCP.

The main objective

Any developer that attempts to enter in SMPP world, must go through Kannel software
(http://www.kannel.org/). However, Kannel project is so big that it discourages anybody
willing to develop a simple SMPP application.

So the library focus is to provide an implementation of SMPP-3.4 protocol but just for PDUs
handling, taking as independent the managing of TCP connection and SMPP session. As we
see, the library is directed to solve just the protocol issue, left to programmers the handling
of the other levels in the communication

API definition

The API is defined in four functions:

¢ Packed function: In this function the first and last parameters are identifying the data
structure that we want to pack. The first parameter indetifies the data structure through
an integer and the last one refers to data object.

int smpp34_pack(uint32_t type, /* in «/
uint8_t *ptrBuf, /* out x/
int ptrSize, /% out */
int *ptrLen, /% out */
void *tt /* in x/)

» Unpacked function: In this function a pointer to the buffer and its lenght is passed as
parameters. The function returns a pointer to a data structure defined by a type field.
int smpp34_unpack(uint32_t type, /* in x/

void *tt, /% out */
uint8_t *ptrBuf, /x in «/
int ptrLen, /* in x/)

e Structure dump function: The utility of this function is to provide with a tool for to see
the parameters and values of a PDU (data structure). The in parameters refers to data
object and the out parameters is a string buffer where the new representation is done.

int smpp34_dumpPdu(uint32_t type, /* in x/
uint8_t =xdest, /x out =/
int size_dest, /% in */
void *tt /* in */)

¢ Buffer dump

C open smpp-3.4 Library

function: In this function, the in parameters refers to a buffer and the

its lenght. This function prints in a external buffer a hexa representation of the binary

source.

int smpp34_dumpBuf (uint8_t =*dest, /x out =*/

int destL, /x in =/
uint8_t =src, /* in */
int srcL /x in */)

In addition to this function, the global variables that complete the API for developing are

defined.

int smpp34_errno;
char smpp34_strerror[2048];

Besides, all the data structure proprietary of th SMPP protocol are defined. There is a data
structure for each PDU definition. For more information about SMPP please refer to SMPP
protocol specification.

typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct

The description

tlv_t tlv_t;

dad_t dad_t; /* used in SUBMIT_MULTI PDU */
udad_t udad_t; /* used in SUBMIT_MULTI_RESP PDU =x/
bind_transmitter_t bind_transmitter_t;
bind_transmitter_resp_t bind_transmitter_resp_t;
bind_receiver_t bind_receiver_t;
bind_receiver_resp_t bind_receiver_resp_t;
bind_transceiver_t bind_transceiver_t;
bind_transceiver_resp_t bind_transceiver_resp_t;
outbind_t outbind_t;

unbind_t unbind_t;

unbind_resp_t unbind_resp_t;

generic_nack_t generic_nack_t;

submit_sm_t submit_sm_t;

submit_sm_resp_t submit_sm_resp_t;
submit_multi_t submit_multi_t;
submit_multi_resp_t submit_multi_resp_t;
deliver_sm_t deliver_sm_t;

deliver_sm_resp_t deliver_sm_resp_t;

data_sm_t data_sm_t;

data_sm_resp_t data_sm_resp_t;

query_sm_t query_sm_t;

query_sm_resp_t query_sm_resp_t;

cancel_sm_t cancel_sm_t;

cancel_sm_resp_t cancel_sm_resp_t;

replace_sm_t replace_sm_t;

replace_sm_resp_t replace_sm_resp_t;
enquire_link_t enquire_link_t;
alert_notification_t alert_notification_t;

of each data structure is detailed in SMPP-3.4 document (Short Message

Peer to Peer Protocol Specification v3.4). As another settled goal, the implementation of each

C open smpp-3.4 Library

structure doesn'’t differ at all from the protocol specification (with exception of the optional
parameters, where a list of dynamic data are used).

So if you want to handle optional parameters in SMPP-3.4 protocol, you must use two
functions:

int build_tlv(tlv_t =*=xdest, tlv_t +*source);
int destroy_tlv(tlv_t xsourcelist);

If you want to handle destination address dinamic list in SUBMIT MULTI and
SUBMIT_MULTI_RESP PDUs, you must use two functions:

int build_dad(dad_t =*=xdest, dad_t =*source);
int destroy_dad(dad_t =sourcelist);

int build_udad(udad_t =x*dest, udad_t =xsource);
int destroy_udad(udad_t =xsourcelist);

Please check the SMPP-3.4 specification and the examples added to handle this PDUs.

We'll see each function in detail. The library gives you an example of each PDU handled.

Packaging function of data structures

The function smpp34_pack(...) takes five parameters and returns an integer value that
describes the operation result. A value distinct of O (zero) is represetative of an error in
the packaging attempt. Then there is a description in text mode in the global variable
smpp34_strerror.

extern int smpp34_errno;
extern char smpp34_strerror[2048];

int smpp34_pack(uint32_t type, /* in %/
uint8_t =*ptrBuf, /* out */
int ptrSize, /* out x/
int xptrLen, /% out */
void *tt /* in */)
Where:

type: is the PDU command_id that we want to pack, the parameter value is related to a
specific data structure.

ptrBuf: is a buffer reference, where we will store the PDU packaged. The memory must be
reserved externally, it would be dynamic or static memory, but the function is not respon-
sible for free any dynamic memory passed as a parameter.

ptrSize: This parameter is a integer that describes the buffer lenght where we will store de
PDU packaged (the previus parameter).

C open smpp-3.4 Library

ptrLen: In a success case, this variable keep the data lenght in the buffer. Obviously always
ptrLen < ptrSize.

tt: It’s a reference to any data structure listed in the introduction, and corresponds to the
value of the first parameter.

An example

We'll see a small example to use this function, the creation of data object, the load of
information in data structure and the pack in a buffer are detailed in this example.

Example 1. Pack and dumpBuff example.

#include <stdio.h>

#include <string.h>
#include <stdint.h>
#include <netinet/in.h>
#include "smpp34.h"
#include "smpp34_structs.h"
#include "smpp34_params.h"

char bufPDU[2048];
int bufPDULen = 0;
char bPrint[2048];

int main(int argc, char xargv[])

{

int ret = 0;
bind_transmitter_t pdu;

/+ Init PDU =/

memset (&pdu, 0, sizeof (bind_transmitter_t));

pdu.command_length = 0;

BIND_TRANSMITTER; /* defined in smpp34.h */
ESME_ROK; /* defined in smpp34.h x/

pdu.command_id

pdu.command_status

pdu.sequence_number = 1;

snprintf (pdu.system_id, sizeof (pdu.system_id), "%$s", "user");
snprintf (pdu.password, sizeof (pdu.password), "%s", "pass");

snprintf (pdu.system_type, sizeof (pdu.system_type), "%s", "type");
pdu.interface_version = SMPP_VERSION;

pdu.addr_ton = 2;

pdu.addr_npi = 1;

snprintf (pdu.address_range, sizeof (pdu.address_range), "%s", "123");

/* Linealize PDU to buffer =/
memset (&bufPDU, 0, sizeof (bufPDU));
ret = smpp34_pack(pdu.command_id,
bufPDU, sizeof (bufPDU), &bufPDULen, (voidx)é&pdu);
if(ret !'= 0){
printf ("Error in smpp34_pack () :%d:\n%s\n",

C open smpp-3.4 Library

smpp34_errno, smpp34_strerror);
return(-1);

by

/* Print Buffer =*/
memset (bPrint, 0, sizeof (bPrint));
ret = smpp34_dumpBuf (bPrint, sizeof (bPrint), bufPDU, bufPDULen);
if(ret !'= 0){

printf ("Error in smpp34_dumpBuf () :$d:\n%s\n",

smpp34_errno, smpp34_strerror);

return(-1);

}i

printf ("The PDU bind_transmitter is packet in\n%s", bPrint);
return(0);

}i
At the last, this same example is refered by smpp34_dumpBuf (...). This example is com-
piled by:

[rtremsal@localhost dist]$ gcc -o lo lo.c -I./include -static -L./lib -lsmpp34
[rtremsal@localhost dist]$./lo
The PDU bind_transmitter is packet in

00 00 00 26 00 00 00 02 00 00 00 00 00 00 0O O1 & e
75 73 65 72 00 70 el 73 73 00 74 79 70 65 00 34 user.pas s.type.4
02 01 31 32 33 00 ..123.

Unpackaging function of data structures

The function smpp34_unpack (...) takes four parameters and returns an integer value that
describes the operation result. A value distinct of O (zero) is an internal error in the unpack-
aging attempt. Then there is a text description in the global variable smpp34_strerror.

extern int smpp34_errno;
extern char smpp34_strerror[2048];

int smpp34_unpack(uint32_t type, /% in */
void *tt, /% out */
uint8_t *ptrBuf, /+ in */
int ptrlen, /* in %/)
Where:

type: This parameter is the PDU command_id that we want to unpack, the value of this
parameter is related to data structure described in the introduction.

C open smpp-3.4 Library

tt: It's a pointer to one of the data structures listed in the introduction and it corresponds
to the first parameter value. The pointer to that structure describes where the content of
the buffer is to be stored.

ptrBuf: Is a buffer pointer, where the packaged PDU is stored and is ready to be processed.

ptrLen: This variable refers to the buffer lenght above described.

An example

Here you have a small example on how to use the function. The creation of a buffer with
binary data, the unpack function call and the information load over a data structure is
showed.

Example 2. Unpack and dumpPdu examples.

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <netinet/in.h>
#include "smpp34.h"

#include "smpp34_structs.h"

#include "smpp34_params.h"

char bufPDU[] = { 0x00, 0x00, 0x00, 0Ox36, 0x00, 0x00, 0x00, 0xO01,

int

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0x01,
0x73, 0x79, 0x73, 0x74, 0x65, 0x6D, Ox5F, 0x69,
Ox64, 0x00, 0x70, Ox6l, 0x73, 0x73, 0x00, 0x73,
0x79, 0x73, 0x74, 0x65, 0x00, 0x00, 0x02, 0x01,
0x61, Ox64, 0x64, 0x72, 0x65, 0x73, 0x73, O0x5F,
0x72, 0Ox61, 0x6E, 0x67, 0x65, 0x00 };

bufPDULen = 0;

char bPrint[2048];

int main(int argc, char xargv[])

{

int ret = 0;
bind_receiver_t pdu;
uint32_t tempo;
uint32_t cmd_id;

/* Init PDU ***/
memset (&pdu, 0, sizeof (bind_receiver_t));

memset (&bPrint, 0, sizeof (bPrint));

memcpy (&tempo, bufPDU+4, sizeof (uint32_t));

cmd_id = ntohl(tempo);

/ * unpack PDU ***/
ret = smpp34_unpack (cmnd_id, (voidx)&pdu, bufPDU, sizeof (bufPDU)) ;
if(ret !'= 0){

C open smpp-3.4 Library

printf("Error in smpp34_unpack () :%d:%s\n",
smpp34_errno, smpp34_strerror);
return(-1);

bi

/* Print PDU **/
memset (bPrint, 0, sizeof (bPrint));
ret = smpp34_dumpPdu (cmd_id, bPrint, sizeof (bPrint), (voidx)é&pdu);
if(ret !'= 0){

printf("Error in smpp34_dumpPdu() :%d:%s\n",

smpp34_errno, smpp34_strerror);

return(-1);
}i
printf ("The received PDU: \n%s\n", bPrint);

return(0);

}i

At the last, this example is refered from the description of smpp34_dumpPdu(...).
This example is compiled by:
[rtremsal@localhost dist]$ gcc -o 11 1l.c -I ./include -static -L ./lib -1lsmpp34

[rtremsal@localhost dist]$./11
E1l PDU recibido es:

command_length [00000036] - [54]

command_id [00000001] - [BIND_RECEIVER]
command_status [00000000] - [ESME_ROK]
sequence_number [00000001] - [1]

system_id [system_id]

password [pass]

system_type [syste]

interface_version [00] - [0]

addr_ton [02] — [TON_National]
addr_npi [01] — [NPI_ISDN_E163_E164]
address_range [address_range]

Data structures dump function

The function smpp34_dumpPdu(...) takes four parameters and returns an integer value
that describes the operation result. A value distinct of O (zero) means an error in the opera-
tion. There is a description in text mode of the error in the global variable smpp34_strerror.

extern int smpp34_errno;
extern char smpp34_strerror[2048];

C open smpp-3.4 Library

int smpp34_dumpPdu(uint32_t type, /* in %/
uint8_t xdest, /* out x/
int size_dest, /x in %/
void *tt /% in /)
Where:

type: Is the PDU command_id that identifies the data structure. This value is directally
related with a specific data structure.

dest: Is a buffer reference, where we will store the PDU dump. The memory must be reserved
externally, it would be dynamic or static memory, but the function is not responsible of
freeing it.

size_dest: This integer describes the lenght of the destination buffer (the previous parame-
ter).

tt: This reference is a pointer to data structures listed in the introduction. This structure is
identified by the first parameter.

An example

The Example 2 describes the use of this function.

Buffer dump function

The function smpp34_dumpBuff(...) takes four parameters and returns an integer value
that describes the operation result. A value distinct of O (zero) describes an operation error
and a description in text mode is stored in smpp34_strerror.

extern int smpp34_errno;
extern char smpp34_strerror[2048];

int smpp34_dumpBuf (uint8_t xdest, /* out =*/

int destL, /x in «/
uint8_t =xsrc, /* in */
int srcL /* in x/)

Where:

dest: This parameter is a buffer reference where the dumped buffer will be stored. The mem-
ory must be reserved externally, it would be dynamic or static memory, but the function is
not responsable for freeing it.

destL: This integer is the lenght of the buffer (the previus buffer).
src: This pointer is a reference to the source buffer (binary buffer).

srcL: This integer is the lenght of the buffer (the previus buffer).

10

C open smpp-3.4 Library

An example

The Example 1 describes the use of this function.

Optional parameters

The functions build_tlv(...) and destroy_tlv(...) allow to create and destroy ele-
ments linked in a list of variables called optional parameters. This parameters are in some
data structures in the SMPP-3.4 protocol, and they are called optional parameters.

int build_tlv(tlv_t =**dest,
tlv_t xsource);

int destroy_tlv(tlv_t =*sourcelist);

Where:

dest: This pointer is a reference to pointer of data type tlv_t. In an example, we’ll see how
use this function.

source: This pointer is a reference to tlv_t.

sourceList: This pointer is a reference to tlv_t. In destroy_tlv(...) the parameter is a
list linked reference.

An example

The use of optional parameters is bounded to data type tlv_t that is not present in all data
structures of SMPP-3.4 protocol We'll see an example of this function.

#define TEXTO "mensaje de texto numero 01"

submit_sm_t pdu;
tlv_t tlv;

memset (&tlv, 0, sizeof(tlv_t));

tlv.tag = TLVID_user_message_reference; /* tag present in submit_sm =/
tlv.length = sizeof (uintlé6_t);

tlv.value.vall6 = 0x0024; /* valor =*/
build_tlv(&(pdu.tlv), &tlv); /+ value attached to main structure =*/

memset (&tlv, 0, sizeof (tlv_t));

tlv.tag = TLVID_more_messages_to_send; /+ tag present in submit_sm */
tlv.length = sizeof (uint8_t);

tlv.value.val8 = 0x24; /* valor x/
build_tlv(&(pdu.tlv), &tlv); /* value attached to main structure =/

memset (&tlv, 0, sizeof(tlv_t));

11

C open smpp-3.4 Library

tlv.tag = TLVID_message_payload; /+ tag present in submit_sm */
tlv.length = strlen (TEXTO) ;

memcpy (tlv.value.octet, TEXTO, tlv.length); /* valor =/
build_tlv(&(pdu.tlv), &tlv); /* value attached to main structure x/

/* Pack and send data in pdu =*/

destroy_tlv(pdu.tlv); /+ Free pdu list =/

Handling of destination address lists in SUBMIT_MULTI
and SUBMIT_MULTI_RESP PDUs

Like the previus section, the problem of handle dinamic list, now in SUBMIT_MULTI y
SUBMIT_MULTI_RESP PDU, is resolved with the following functions: build_dad(...),

build_udad(...), destroy_dad(...) and destroy_udad(...). This functions allow
create and destroy dinamic lists of parameters, now of destination address.

int build_dad(dad_t =*=*dest,
dad_t *source);
int destroy_dad(dad_t +*sourcelist);
int build_udad(udad_t =x=xdest,
udad_t *source);
int destroy_udad(udad_t =xsourcelist);

Please check the following applications code for understand how to handle this PDUs:
submit_multi_test and submit_multi_resp_test. If you already handle optional parame-
ters, you don’t be problems with this functions.

Examples included in library release.

PDU samples.

The library has an example for each PDU on SMPP-3.4 protocol. The applications are exe-
cuted without parameters and the idea is to test the API functions through a serie of steps.

1. To declare two variables of the same type and to assign values to one of them.

2. Apply a PDU dump to the first data structure. It will show all data components of de
object data.

3. Pack the structure into a buffer and dump it.

12

C open smpp-3.4 Library

4. Unpack this buffer over the second variable defined in the first point.

5. Do a dump of the second structure.

An ESME basic.

We have added a little ESME that submits a message. The sintax to run the ESME is.

[rtremsal@localhost bin]$./esme

Error in parameters

usage: ./esme -c file.xml [-h]
-c /path/to/file.xml: config file path.
-h : Help, show this message.

[rtremsal@localhost bin]$ more esme.xml
<?xml version="1.0"7?>
<config>
<conn_tcp host="127.0.0.1" port="9090"/>
<conn_smpp system_id="sytem" password="asdfg34" system_type="typelOl"/>
<smpp_msg src="5565" dst="0911110000" msg="Este es un ejemplo 01"/>
</config>

The config file has parameters to made the connection tcp, the connection smpp and the
parameters to send a message. This application is ejecuted by:

[rtremsal@localhost bin]$./esme -c esme.xml
Error in connect (127.0.0.1:9090)
Error in tcp connect.

[rtremsal@localhost bin]$./esme —-c esme.xml

SENDING PDU

command_length [00000029] - [41]

command_id [00000002] [BIND_TRANSMITTER]
command_status [00000000] - [ESME_ROK]

RECEIVE BUFFER
00 00 00 10 80 00 00 06 00 00 00 00 00 00 00 03 .t i

RECEIVE PDU

command_length [00000010] - [1le6]
command_id [80000006] - [UNBIND_RESP]
command_status [00000000] - [ESME_ROK]
sequence_number [00000003] - [3]

13

C open smpp-3.4 Library

In the first case, a smpp server is not present, then there was an error in the tcp level. In the
second case, helped by a test smpp client program sctt - (SMPP Client Test Tool). available
in SMS Forum (http://www.smsforum.com).

In the second case, the internal operations that allow sending a message are:

¢ Connect the ESME in TCP level.

e Connect the ESME in SMPP level through PDU BIND with validation parameters
(We connect in TRANSMITTER mode), wait for a confirmation through PDU
BIND_TRANSMITER_RESP.

« Send the message (SUBMIT_SM PDU) and receive the confirmation in SUBMIT_SM_RESP
PDU.

» Disconnect the ESME in SMPP level sending UNBIND PDU, we wait for a confirmation
UNBIND_RESP PDU.

» Disconnect the ESME in TCP level closing the socket.

Although this example is very basic it allow us to see in detail the function of the library
inside an ESME.

Conclusions and future works.

The library main focus is based in the management of data structures. Although this exam-
ple is about SMPP-3.4 implementation, we think that the same principle would be applied
to any TCP protocol.

The next goal is the implementation of version 5.0 of SMPP protocol.

14

